Web datasets integration with RDF-AI

François Scharffe
joint work with
Yanbin Liu, Chunguang Zhou, Jilin University

INRIA Grenoble Rhone-Alpes, France

July 11, 2009
Outline

Web Datasets Integration

RDF-AI Architecture

System Implementation

Experimental Results

Conclusion
Outline

Web Datasets Integration

RDF-AI Architecture

System Implementation

Experimental Results

Conclusion
Web Datasets

If ontologies are the backbone of the Semantic Web, Web datasets are its flesh!
Web Datasets

A Web dataset has the following characteristics:

▶ It is described in RDF
Web Datasets

A Web dataset has the following characteristics:

- It is described in RDF
- It is provided and maintained by a single entity
A Web dataset has the following characteristics:

- It is described in RDF
- It is provided and maintained by a single entity
- Every resources are described according to a common URI scheme
Web Datasets

A Web dataset has the following characteristics:

- It is described in RDF
- It is provided and maintained by a single entity
- Every resources are described according to a common URI scheme
- Each resource is typed according to an ontology
A Web dataset has the following characteristics:

- It is described in RDF
- It is provided and maintained by a single entity
- Every resource is described according to a common URI scheme
- Each resource is typed according to an ontology
- Each resource URI is dereferenceable
Available datasets in the linked-data cloud

Figure: Linked data cloud, May 2007
Available datasets in the linked-data cloud
What’s needed there

Constituting and maintaining datasets can hardly be done manually. Tools are needed to automatically:

- **Interlink** two datasets
- **Fusion** two datasets in order to extend an existing one

RDF-AI addresses these two problems.
Two approaches

- Equivalence lists (CRS) in RKB explorer
- Entity Name Servers in OKKAM

Both approaches need to detect equivalent URIs.
Matching

Definition (Matching)
Given two datasets G_1 and G_2 find an alignment A between G_1 and G_2.

Property
G_1 and G_2 are two Web datasets

Property
Similar resources in G_1 and G_2 are described according to the same ontologies
Web datasets illustration (1)

Figure: Two datasets
Web datasets illustration (2)

Figure: Two datasets and their ontological definitions
Aligned datasets illustration

Figure: Alignment between two datasets
Interlink and Fusion

Definition (Interlink)
Given two datasets G_1 and G_2 and an alignment, construct the linkset G_3 a set of links between pairs of resources from G_1 and G_2.

Definition (Fusion)
Given two datasets G_1 and G_2 and an alignment, construct the dataset G_3 resulting of fusing G_1 and G_2 according to the user input.
Outline

Web Datasets Integration

RDF-AI Architecture

System Implementation

Experimental Results

Conclusion
Architecture Overview

Figure: RDF-AI architecture
I/O (Pre-processing)

Input: Two datasets G_1 and G_2, a set of parameters P

Output: Two datasets G'_1 and G'_2

The pre-processing module is concerned with checking and preparing the datasets for the rest of the process.

Example operations: Checking the datasets consistency wrt the ontologies, checking the datasets are described using the same version of the ontology, property values formatting.
Matching

I/O (Matching)

Input: Two datasets G'_1 and G'_2, a set of parameters P

Output: An Alignment A between resources of G'_1 and G'_2

The matching module automatically detects equivalent resources. It can be interchanged through the use of the alignment format. Example output:

```xml
<Alignment rdf:about="http://www.example.org/alignment/324684dd32">
  <map>
    <Cell>
      <entity1>
        <Instance rdf:resource="http://kmi.open.ac.uk/fusion dblp#document163751_264"/>
      </entity1>
      <entity2>
        <Instance rdf:resource="http://kmi.open.ac.uk/fusion dblp#document1fd88bff0db93"/>
      </entity2>
      <measure rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.620920502</measure>
    </Cell>
  </map>
</Alignment>
```
I/O (Interlink)

Input: An Alignment A between resources of G_1 and G_2, a set of parameters P
Output: A linkset L between resources of G_1 and G_2

The interlinking modules construct a linkset according to the alignment and the user input. Example linkset:

```
{
    <http://www.example.org/linkset/135erf65> a void:Linkset ;
    voiD:target <http://dataset1> ;
    voiD:target <http://dataset2> ;
    align:fromAlignment <http://www.example.org/alignment/324684dd32> ;
    align:threshold 0.5 .
}
```

```
<http://www.example.org/linkset/135erf65>
{
    <http://kmi.open.ac.uk/fusion/dblp#document163751_264> owl:same_as
    <http://kmi.open.ac.uk/fusion/dblp#document1fd88bff0db93> .
}
```
I/O (Fusion)

Input: Two datasets G_1 and G_2, an Alignment A between resources of G_1 and G_2, a set of parameters P

Output: A dataset G_3

Details of the fusion algorithms are let open to the implementation.
Post-processing

I/O (Post-processing)

Input: A dataset G_3, a set of parameters P

Output: A dataset G'_3

The post-processing module is concerned with checking and publishing the datasets resulting from the process. Example operations are checking the consistency of the dataset resulting from the fusion wrt the ontologies or including the linkset as part of one of the two linked datasets.
Outline

Web Datasets Integration

RDF-AI Architecture

System Implementation

Experimental Results

Conclusion
Quick overview

Pre-processing The pre-processing module prepare the input graphs in order to: adapt the datasets to a same ontology version, translate selected properties using Google translate API, harmonize names.
Quick overview

Pre-processing The pre-processing module prepare the input graphs in order to: adapt the datasets to a same ontology version, translate selected properties using Google translate API, harmonize names.

Matching The matching modules matches the datasets and output an alignment. It uses a user configuration to select the most relevant properties for matching two resources. It uses a sequence alignment algorithm to match strings. It uses wordnet for computing a semantic similarity between words.

Interlinking The interlinking module produces a linkset according to the alignment and a threshold provided by the user.

Fusion The fusion module produces a new graph. The user can select the fusion strategy: source graph, extension graph, merging or duplication of similar properties.

Post-processing The post processing module actually does not perform anything
Quick overview

Pre-processing The pre-processing module prepares the input graphs in order to: adapt the datasets to a same ontology version, translate selected properties using Google translate API, harmonize names.

Matching The matching modules matches the datasets and output an alignment. It uses a user configuration to select the most relevant properties for matching two resources. It uses a sequence alignment algorithm to match strings. It uses wordnet for computing a semantic similarity between words.

Interlinking The interlinking module produces a linkset according to the alignment and a threshold provided by the user.
Quick overview

Pre-processing The pre-processing module prepare the input graphs in order to: adapt the datasets to a same ontology version, translate selected properties using Google translate API, harmonize names.

Matching The matching modules matches the datasets and output an alignment. It uses a user configuration to select the most relevant properties for matching two resources. It uses a sequence alignment algorithm to match strings. It uses wordnet for computing a semantic similarity between words.

Interlinking The interlinking module produces a linkset according to the alignment and a threshold provided by the user.

Fusion The fusion module produces a new graph. The user can select the fusion strategy: source graph, extension graph, merging or duplication of similar properties.
Quick overview

Pre-processing The pre-processing module prepare the input graphs in order to: adapt the datasets to a same ontology version, translate selected properties using Google translate API, harmonize names.

Matching The matching modules matches the datasets and output an alignment. It uses a user configuration to select the most relevant properties for matching two resources. It uses a sequence alignment algorithm to match strings. It uses wordnet for computing a semantic similarity between words.

Interlinking The interlinking module produces a linkset according to the alignment and a threshold provided by the user.

Fusion The fusion module produces a new graph. The user can select the fusion strategy: source graph, extension graph, merging or duplication of similar properties.

Post-processing The post processing module actually does not perform anything
Outline

Web Datasets Integration

RDF-AI Architecture

System Implementation

Experimental Results

Conclusion
Tests on three datasets

1. Publication datasets AKT EPrints archive \(^1\) and Rexa \(^2\). 314 and 2103 resources.

2. Large music datasets Jamendo \(^3\) and Musicbrainz \(^4\).

3. Two small datasets about Johann Sebastian Bach works.\(^5\) \(^6\) 771 and 800 resources.

\(^1\) http://eprints.aktors.org
\(^2\) http://www.rexa.info
\(^3\) http://www.jamendo.com
\(^4\) http://www.musicbrainz.org
\(^5\) http://www.scharffe.fr/pub/dist2008/bach-1.rdf.xml
\(^6\) http://www.scharffe.fr/pub/dist2008/bach-2.rdf.xml
Outline

Web Datasets Integration

RDF-AI Architecture

System Implementation

Experimental Results

Conclusion
Conclusion

- RDF-AI is an architecture and implementation for Web datasets alignment, interlink and Fusion
Conclusion

- RDF-AI is an architecture and implementation for Web datasets alignment, interlink and Fusion
- Initial framework and prototypes have been presented here but there is still a lot to do:
Conclusion

- RDF-AI is an architecture and implementation for Web datasets alignment, interlink and Fusion
- Initial framework and prototypes have been presented here but there is still a lot to do:
 - Formalizing the problem using graph grammars
Conclusion

- RDF-AI is an architecture and implementation for Web datasets alignment, interlink and Fusion
- Initial framework and prototypes have been presented here but there is still a lot to do:
 - Formalizing the problem using graph grammars
 - Automatic acquisition of the datasets structure
Conclusion

- RDF-AI is an architecture and implementation for Web datasets alignment, interlink and Fusion
- Initial framework and prototypes have been presented here but there is still a lot to do:
 - Formalizing the problem using graph grammars
 - Automatic acquisition of the datasets structure
 - Usage of the ontologies axioms to derive matches
Conclusion

- RDF-AI is an architecture and implementation for Web datasets alignment, interlink and Fusion
- Initial framework and prototypes have been presented here but there is still a lot to do:
 - Formalizing the problem using graph grammars
 - Automatic acquisition of the datasets structure
 - Usage of the ontologies axioms to derive matches
 - Usage of other thesauri like SKOS
Conclusion

- RDF-AI is an architecture and implementation for Web datasets alignment, interlink and Fusion
- Initial framework and prototypes have been presented here but there is still a lot to do:
 - Formalizing the problem using graph grammars
 - Automatic acquisition of the datasets structure
 - Usage of the ontologies axioms to derive matches
 - Usage of other thesauri like SKOS
 - Implementation of the consistency checking functionality
Conclusion

- RDF-AI is an architecture and implementation for Web datasets alignment, interlink and Fusion
- Initial framework and prototypes have been presented here but there is still a lot to do:
 - Formalizing the problem using graph grammars
 - Automatic acquisition of the datasets structure
 - Usage of the ontologies axioms to derive matches
 - Usage of other thesauri like SKOS
 - Implementation of the consistency checking functionality
 - Dealing with large datasets by dynamically querying resources
Conclusion

- RDF-AI is an architecture and implementation for Web datasets alignment, interlink and Fusion
- Initial framework and prototypes have been presented here but there is still a lot to do:
 - Formalizing the problem using graph grammars
 - Automatic acquisition of the datasets structure
 - Usage of the ontologies axioms to derive matches
 - Usage of other thesauri like SKOS
 - Implementation of the consistency checking functionality
 - Dealing with large datasets by dynamically querying resources
 - Multi ontologies, usage of ontology alignments
2 ongoing activities

- Data matching at the Ontology Alignment Evaluation Initiative (OAEI)

- MeLinDa, finding commonalities in data matchers input descriptions.

 http://melinda.inrialpes.fr
2 ongoing activities

- Data matching at the Ontology Alignment Evaluation Intitiative (OAEI)
Questions

▶ What level of automation is feasible?
Questions

- What level of automation is feasible?
- Links quality?
Thank you!

http://code.google.com/p/rdfai/

This presentation is available at

http://www.scharffe.fr/presentations/

rdf-ai-presentation-STI-research-seminar-01-12-2008.pdf